Package: elo 3.0.2.9000

elo: Ranking Teams by Elo Rating and Comparable Methods

A flexible framework for calculating Elo ratings and resulting rankings of any two-team-per-matchup system (chess, sports leagues, 'Go', etc.). This implementation is capable of evaluating a variety of matchups, Elo rating updates, and win probabilities, all based on the basic Elo rating system. It also includes methods to benchmark performance, including logistic regression and Markov chain models.

Authors:Ethan Heinzen [aut, cre]

elo_3.0.2.9000.tar.gz
elo_3.0.2.9000.zip(r-4.5)elo_3.0.2.9000.zip(r-4.4)elo_3.0.2.9000.zip(r-4.3)
elo_3.0.2.9000.tgz(r-4.4-x86_64)elo_3.0.2.9000.tgz(r-4.4-arm64)elo_3.0.2.9000.tgz(r-4.3-x86_64)elo_3.0.2.9000.tgz(r-4.3-arm64)
elo_3.0.2.9000.tar.gz(r-4.5-noble)elo_3.0.2.9000.tar.gz(r-4.4-noble)
elo_3.0.2.9000.tgz(r-4.4-emscripten)elo_3.0.2.9000.tgz(r-4.3-emscripten)
elo.pdf |elo.html
elo/json (API)
NEWS

# Install 'elo' in R:
install.packages('elo', repos = c('https://eheinzen.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/eheinzen/elo/issues

Pkgdown site:https://eheinzen.github.io

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:

On CRAN:

eloelo-ratinglogistic-regressionmarkov-chainmarkov-modelrankingsports-analyticscpp

7.05 score 37 stars 153 scripts 484 downloads 25 exports 3 dependencies

Last updated 1 years agofrom:1ce2bba9fa. Checks:4 OK, 5 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 08 2025
R-4.5-win-x86_64NOTEJan 08 2025
R-4.5-linux-x86_64NOTEJan 08 2025
R-4.4-win-x86_64NOTEJan 08 2025
R-4.4-mac-x86_64NOTEJan 08 2025
R-4.4-mac-aarch64NOTEJan 08 2025
R-4.3-win-x86_64OKJan 08 2025
R-4.3-mac-x86_64OKJan 08 2025
R-4.3-mac-aarch64OKJan 08 2025

Exports:adjustbrierelo.calcelo.colleyelo.glmelo.markovchainelo.model.frameelo.probelo.runelo.run.multiteamelo.updateelo.winpctfavoredfinal.elosgroupis.scorekmovmsemultiteamneutralplayersrank.teamsregressscore

Dependencies:plyrpROCRcpp

Adjusting for Players in the Elo Framework

Rendered fromplayers.Rmdusingknitr::rmarkdownon Jan 08 2025.

Last update: 2023-09-19
Started: 2023-09-19

Calculating Running Elo Updates

Rendered fromrunning_elos.Rmdusingknitr::rmarkdownon Jan 08 2025.

Last update: 2020-10-21
Started: 2020-10-21

Comparison Methods

Rendered fromcomparison_methods.Rmdusingknitr::rmarkdownon Jan 08 2025.

Last update: 2023-08-22
Started: 2020-10-21

Introduction to Elo Rankings and the 'elo' Package

Rendered fromintro.Rmdusingknitr::rmarkdownon Jan 08 2025.

Last update: 2020-10-21
Started: 2020-10-21

Readme and manuals

Help Manual

Help pageTopics
Calculate AUC on an 'elo.run' objectauc.elo auc.elo.colley auc.elo.glm auc.elo.markovchain auc.elo.run auc.elo.running auc.elo.winpct
The Elo Packageelo-package elo
Post-update Elo valueselo.calc elo.calc.default elo.calc.formula
Compute a Colley matrix model for a matchup.elo.colley
Compute a (usually logistic) regression model for a series of matches.elo.glm
Compute a Markov chain model for a series of matches.elo.markovchain
Interpret formulas in 'elo' functionselo.model.frame
Create a "margin of victory" columnelo.mov mov
Calculate the mean square errorbrier elo.mse mse mse.elo.colley mse.elo.glm mse.elo.markovchain mse.elo.run mse.elo.running mse.elo.winpct
Elo probabilityelo.prob elo.prob.default elo.prob.elo.multiteam.matrix elo.prob.formula
Calculate running Elos for a series of matches.elo.run
Helper functions for 'elo.run'as.data.frame.elo.run as.matrix.elo.run as.matrix.elo.run.regressed elo.run.helpers final.elos final.elos.elo.run final.elos.elo.run.regressed
Calculate running Elos for a series of multi-team matches.elo.run.multiteam
Elo updateselo.update elo.update.default elo.update.formula
Compute a (usually logistic) regression based on win percentage for a series of matches.elo.winpct
Classify teams that are favored to winfavored favored.default favored.elo favored.elo.colley favored.elo.glm favored.elo.markovchain favored.elo.run favored.elo.running favored.elo.winpct
Extract model valuesfitted.elo fitted.elo.colley fitted.elo.glm fitted.elo.markovchain fitted.elo.run fitted.elo.running fitted.elo.winpct residuals.elo.run
Details on 'elo' formulas and the specials thereinadjust formula.specials group k multiteam neutral players regress
Make Predictions on an 'elo' Objectpredict.elo predict.elo.colley predict.elo.glm predict.elo.markovchain predict.elo.run predict.elo.run.multiteam predict.elo.run.regressed predict.elo.running predict.elo.winpct
Rank teamsrank.teams rank.teams.elo.colley rank.teams.elo.glm rank.teams.elo.markovchain rank.teams.elo.run rank.teams.elo.run.regressed rank.teams.elo.winpct
Create a 1/0/0.5 win "indicator"is.score score
Summarize an 'elo' Objectsummary.elo summary.elo.colley summary.elo.glm summary.elo.markovchain summary.elo.run summary.elo.winpct
'tournament': Mock data for examplestournament
'tournament.multiteam': Mock data for examplestournament.multiteam